pISSN 0705-3797 eISSN 2586-1298
HOME Article View


Episodes 2020; 43(1): 145-163

Published online March 1, 2020


Copyright © International Union of Geological Sciences.

Geochronology, paleomagnetic signature and tectonic models of cratonic basins of India in the backdrop of Supercontinent amalgamation and fragmentation

Sarbani Patranabis-Deb1*, Subhojit Saha2

1. Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108, India
2. Sedimentology Group, Wadia Institute of Himalayan Geology, Dehradun, 248001, India
* Corresponding author, E-mail: patranabis@gmail.com

Correspondence to:E-mail: patranabis@gmail.com

Received: July 10, 2019; Revised: September 12, 2019; Accepted: September 12, 2019

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


The Proterozoic cratonic basins of peninsular India preserve records of repeated opening and closing of rifts along the zone of Neoarchean sutures and/or along the weak zones. These sedimentary basins, ranging in age from late Palaeoproterozoic through Neoproterozoic are traditionally referred to as Purana basins in Indian literature. The successions of each of the basins may be represented by successive unconformity-bound sequences, which represent several cycles of fluvialshallow marine to shelf-slope-basin sedimentation punctuated by local hiatuses and/or volcanic upheavals. The advance retreat of ancient seaways and their complex are recorded in the sedimentary successions of Purana basins.
Papaghni-Chitravati; Kaladgi-Badami; Lower Vindhyan record the oldest cycle of sedimentation. These basins opened after 2.0 Ga and closed by 1.55 Ga. The Chattisgarh and its satellite basins, namely Indravati; Khariar; Ampani opened after the 1.6 Ga. and closed shortly after the 1000 Ma. Albaka; Mallampalli; Kurnool; Bhima preserve Neoproterozoic sedimentation history. The upper Vindhyan basin likely opened after 1.4 Ga. and continued through the Neoproterozoic. The sequence of events indicates a close relationship of craton interior histories with plate tectonics and variations in the heat flow regime underneath the continental crust. Periods of formation of the cratonic basins are coincident with the amalgamation or fragmentation of supercontinents further indicates genetic linkage between the two processes. Synchronous development of the cratonic basins with closely comparable stratigraphy and basin development events, in different small continents, strengthens the view that basin formation processes operated on a global scale, and stratigraphic basin analysis on a regional scale is a significant tool in evaluating the basins’ history. The available stratigraphic, geochronologic or palaeomagnetic data from India is still inadequate, and further information is required to constrain its definite position in the context of global tectonics.