Episodes 2019; 42(3): 245-252
Published online September 1, 2019
https://doi.org/10.18814/epiiugs/2019/019020
Copyright © International Union of Geological Sciences.
Heejung Kim1, Jin-Yong Lee2,3,*, Kitae Kim4
1 The Research Institute for Earth Resources, Kangwon National University, Chuncheon 24341, Republic of Korea.
2 Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; *Corresponding author, E-mail: hydrolee@kangwon.ac.kr
3 Critical Zone Frontier Research Laboratory (CFRL), Kangwon National University, Chuncheon 24341, Republic of Korea.
4 Korea Polar Research Institute, Incheon 21990, Republic of Korea
Correspondence to:E-mail: hydrolee@kangwon.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Thermal diffusivity is a physical quantity that represents the thermal properties of soil. Amid the climate change known as global warming faced by humanity, Antarctica is one of the regions most affected by such changes. Therefore, in order to counter the effects of climate change, the thermal diffusivity of Antarctic regions is estimated in advance. In this study, the thermal diffusivities of four different locations near the King Sejong Station were estimated using temperature data measured in Antarctic soils, and temperature time series data were simulated using the finite element method. The thermal dynamic of active layer is analyzed in the soil temperature with high temporal resolution and high accuracy. In active layer of Antarctica area, calculation of thermal diffusivity is closely correlated with the freezing of excess water. From the warm and cold period, the pattern of heat production was calculated at the depth of 20 cm. The results showed that the thermal diffusivities of SJL1, SJL2 and SJL4 were 14 × 10-7, 12 × 10-7, and 11 × 10-7 m2/s with root-mean-square (RMS) errors of 0.19953, 0.21182, and 0.32168°C, respectively. The shallow geothermal gradient data of study points showed the change from cooling and heating processes except SJL3 point. The calculated thermal diffusivities of the study points range from 11~14 × 10-7 m2/s, which is consistent with previous reports.
Article as PDF | Print this Article |
Export to Citation | E-mail alert |